Calculus I	Name:
Study Guide 11	Class:
Due Date:	Score:

No Work \Leftrightarrow No Points

Use Pencil Only \Leftrightarrow Be Neat & Organized

1. Find $\frac{dy}{dx}$ by implicit differentiation: (a) (3 points) $x^2 - y^2 = 100$

(b) (3 points)
$$\frac{1}{x} + \frac{1}{y} = 1$$

(b) _____

(a) _____

(c) (3 points) $x = \cos y$

(c) _____

(d) (3 points) $x \cos y = y$

(d) _____

(e) (3 points) $x^3y^2 - 4 = 0$

(e) _____

2. (5 points) Find the equation of the tangent line to the graph of $x^2y-5xy^2+6=0~~{\rm at}~~(3,1)$.

2. _____

3. (5 points) Find the equation of the normal line to the graph of $\sin(xy) = y$ at the point $(\pi/2, 1)$.

3. _____

4. (4 points) Find the equation of the tangent line to the graph of $\cos(xy) = y$ at the point (0,1) .

5. Find
$$\frac{dy}{dx}$$
 for
(a) (3 points) $y = \sqrt{x^2 - 4x + 8}$

(b) (3 points)
$$y = \frac{1}{2\pi} \sec^2(\pi x)$$

(a) _____

4._____

(c) (3 points)
$$y = \csc \sqrt[3]{x^2}$$

(d) (3 points)
$$y = \left(\frac{x-1}{x+2}\right)^{3/2}$$

(d) _____

6. (5 points) At what point(s) is the tangent to the curve $y^2 = 2x^3$ perpendicular to the line 4x - 3y + 1 = 0.

6. ______ 7. (4 points) Find the equation of the normal line to the graph of $x^2 + y^2 = 100$ at x = -6 in the 3rd quadrant.

7. _